silvaone

header2silvaone

Wednesday, July 23, 2008

Basic mechanism (greenhouse effect #2)

Solar radiation at top of atmosphere and at Earth's surface.
Pattern of absorption bands generated by various greenhouse gases and their impact on both solar radiation and upgoing thermal radiation from the Earth's surface. Note that a greater quantity of upgoing radiation is absorbed, which contributes to the greenhouse effect.
Pattern of absorption bands generated by various greenhouse gases and their impact on both solar radiation and upgoing thermal radiation from the Earth's surface. Note that a greater quantity of upgoing radiation is absorbed, which contributes to the greenhouse effect.

The Earth receives energy from the Sun in the form of radiation. Most of the energy is in visible wavelengths and in infrared wavelengths that are near the visible range (often called "near infrared"). The Earth reflects about 30% of the incoming solar radiation. The remaining 70% is absorbed, warming the land, atmosphere and ocean.

For the Earth's temperature to be in steady state so that the Earth does not rapidly heat or cool, this absorbed solar radiation must be very closely balanced by energy radiated back to space in the infrared wavelengths. Since the intensity of infrared radiation increases with increasing temperature, one can think of the Earth's temperature as being determined by the infrared flux needed to balance the absorbed solar flux. The visible solar radiation mostly heats the surface, not the atmosphere, whereas most of the infrared radiation escaping to space is emitted from the upper atmosphere, not the surface. The infrared photons emitted by the surface are mostly absorbed in the atmosphere by greenhouse gases and clouds and do not escape directly to space.

The reason this warms the surface is most easily understood by starting with a simplified model of a purely radiative greenhouse effect that ignores energy transfer in the atmosphere by convection (sensible heat transport) and by the evaporation and condensation of water vapor (latent heat transport). In this purely radiative case, one can think of the atmosphere as emitting infrared radiation both upwards and downwards. The upward infrared flux emitted by the surface must balance not only the absorbed solar flux but also this downward infrared flux emitted by the atmosphere. The surface temperature will rise until it generates thermal radiation equivalent to the sum of the incoming solar and infrared radiation.

A more realistic picture taking into account the convective and latent heat fluxes is somewhat more complex. But the following simple model captures the essence. The starting point is to note that the opacity of the atmosphere to infrared radiation determines the height in the atmosphere from which most of the photons are emitted into space. If the atmosphere is more opaque, the typical photon escaping to space will be emitted from higher in the atmosphere, because one then has to go to higher altitudes to see out to space in the infrared. Since the emission of infrared radiation is a function of temperature, it is the temperature of the atmosphere at this emission level that is effectively determined by the requirement that the emitted flux balance the absorbed solar flux.

But the temperature of the atmosphere generally decreases with height above the surface, at a rate of roughly 6.5 °C per kilometer on average, until one reaches the stratosphere 10-15 km above the surface. (Most infrared photons escaping to space are emitted by the troposphere, the region bounded by the surface and the stratosphere, so we can ignore the stratosphere in this simple picture.) A very simple model, but one that proves to be remarkably useful, involves the assumption that this temperature profile is simply fixed, by the non-radiative energy fluxes. Given the temperature at the emission level of the infrared flux escaping to space, one then computes the surface temperature by increasing temperature at the rate of 6.5 °C per kilometer, the environmental lapse rate, until one reaches the surface. The more opaque the atmosphere, and the higher the emission level of the escaping infrared radiation, the warmer the surface, since one then needs to follow this lapse rate over a larger distance in the vertical. While less intuitive than the purely radiative greenhouse effect, this less familiar radiative-convective picture is the starting point for most discussions of the greenhouse effect in the climate modeling literature.

The term "greenhouse effect" is a source of confusion in that actual greenhouses do not warm by this mechanism (see section Real greenhouses). Popular discussions often imply incorrectly that they do; this error is sometimes made even in materials from scientific or governmental agencies (e.g., the U.S. Environmental Protection Agency[3]).
Solar radiation at top of atmosphere and at Earth's surface.
Solar radiation at top of atmosphere and at Earth's surface.
Pattern of absorption bands generated by various greenhouse gases and their impact on both solar radiation and upgoing thermal radiation from the Earth's surface. Note that a greater quantity of upgoing radiation is absorbed, which contributes to the greenhouse effect.
http://en.wikipedia.org/wiki/Green_house_effect

No comments: